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The influence of many-body properties on the excitation 
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Received 25 July 1988 

Abstract. The influence of many-body effects on the excitation spectrum of a binary alloy is 
investigated at the hand of a simple model within CPA. It is found that the detail of the 
spectrum can be significantly altered by many-body self-energy although the average behav- 
iour does not differ drastically from the single-particle approximation. 

1. Introduction 

The most reliable theoretical formalism for the description of the electronic properties 
of random alloys is the coherent potential approximation (CPA) [l]. In its current 
implementation CPA is based on density functional theory (DFT) [2] and is therefore not 
expected to yield accurate information on excitation spectra. Although it is well known 
that DFT applies in principle only to the calculation of ground-state properties [2] such 
as ground-state energy and electron density, DFT in its local density version has become 
a matter of routine for calculating the band structures of metals. Encouraging qualitative 
results have been obtained for metals, but for semiconductors and insulators appreciable 
departures from experiment are well known for DFT consistently underestimating the 
band gap in these materials [ 3 ] .  Recently it has been demonstrated that it is possible to 
calculate band gaps accurately from first principles by going beyond DFT and including 
many-body effects [3]. In the case of metals it is also becoming clear that DFT electronic 
spectra generally deviate from experiment. Even for ‘simple’ metals DFT fails. The band 
widths of the alkali metals Na and K, for example, are overestimated by DFT [4] whereas 
the quasi-particle band widths give very good agreement with experiment [4]. For the 
simple metals Mg, A1 and Be, Plummer [5] enumerated a number of discrepancies such 
as the underestimation of band gaps and poor correspondence for unoccupied states 
when experiment and single-particle approximations are compared. Horsch and co- 
workers have shown in a recent paper that a many-body analysis is crucial to acheive 
agreement between theory and experiment for the unoccupied states of Ag [6]. Schon- 
hammer and Gunnarson in a recent publication [7] have shown that the DFT Fermi 
surface does not always correspond to the quasi-particle Fermi surface by constructing 
a counter-example. This suggests that an improvement of the local-density theory must 
still fail in the detailed description of excitation spectra. Godby and co-workers [3] have 
shown that the full DFT still underestimates the bandgap in semiconductors and that this 
is not a failure of the local-density approximation. 

These examples show that although DFT can yield good qualitative results, it fails in 
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the quantitative description of electronic properties. This is not really surprising since 
there is no obvious relationship between the DFT eigenvalues and the true excitation 
energies of a system. If follows that a many-body analysis is necessary to describe the 
detail of electronic spectra. 

The electronic spectra for binary alloys obtained from CPA calculations qualitatively 
compare quite well with experiment, but as in all other single-particle theories, quanti- 
tative discrepancies exist [l, 81. Some of the questions that are still to be answered 
include the band width and the distribution of the projected densities of states [l, 81. It 
may be that these questions cannot be answered with any accuracy within CPA which is 
really a mean-field approximation and strictly only applies to completely random 
systems, taking no account of possible local order. In the present work we explore at the 
hand of a simple model some of the consequences of the inclusion of many-body effects 
on the electronic spectra of random binary alloys within CPA. 

In 8 2 brief overview is given of the lowest-order approximation to the true many- 
body Green function and a system for including many-body effects in a simple CPA model 
is developed. In § 3 illustrative results of calculations are presented and in § 4 we 
summarise and discuss the model and calculations. 

2. Background and model 

The Green function method is ideal for describing the electronic excitation spectrum of 
an interacting system of electrons and nuclei 191. Unfortunately this involves solving a 
complicated integro-differential equation, 

[0 - h(r)]G(r, r ’ ,  0) - dr ,  C ( r ,  ~ I c o ) G ( ~ I ,  r ’ ,  W )  = 6(r - r ’ )  (2.1) J 
where (for a non-relativistic spin-independent Hamiltonian with the nuclei frozen at the 
equilibrium positions R,) 

h(r) = - V 2  - Z,u(r - R , )  + dr ’  u(r - r ’ )p ( r ’ )  (2.2) 
n I 

with u(r)  the Coulomb interactions and p(r)  the ground-state charge density. The 
excitation energies are given by the poles of G, but the solution of equation (2.1) for 
realistic systems is not yet within reach. The ‘best’ alternative to data is the calculation 
of quasi-particle energies as discussed in [9]. This involves solving an expression of the 
form 

h(r)q(r)  + dr’ X(r, r ’ ,  ~ ) q ( r ’ )  = ~ @ ( r ) .  J 
The eigenvalues of this expression approximate the poles of G. In (2.3) the self-energy 
operator C(r,  r’ ,  0) plays a central role in determining the quasi-particle energies. 
Equation (2.3) is formally equivalent to the DFT expression but with C energy inde- 
pendent and in the local-density version of density functional theory Z(r ,  r ’ ,  CO) is 
replaced by a local function 6 ( r  - r’)Vxc(r). The eigenvalues of (2.3) can be complex 
and the eigenfunctions are in general not orthogonal, which reflects the quasi-particle 
nature of the states described by the wavefunctions. A further simplification that is 
commonly made is to retain only the real part of the self-energy in (2.3). Excitation 
spectra which compare well to experiment-have been calculated using equation (2.3) 
13,61. - 

As for the Green function the exact form of the self-energy operator C is not known. 
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A popular choice for X is the so-called GW approximation first introduced by 
[9,10] where one sets 

G(r, r ’ ,  o - w’)W(r,  r ’ ,  U’) exp(-i6o’) d o ’  2n 
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(2.4) 

where 6 is an infinitesimal positive number. In this expression W represents the dynam- 
ically screened interaction given by 

W(r,  r ’ ,  w )  = dr“  &-I(r,  r”, w)u(r” - r)  (2.5) J 
where C1(r ,  r ’ ,  o) is the inverse of the longitudinal dielectric response function and u(r) 
the bare electron-electron interaction. The exact form for E - ~  is also not known, but a 
number of models exist in the literature [9-101; see also [ll]. The simplest is the so-called 
plasmon pole approximation [9,10] 

&-1(q, w )  = 1 + w’,/(w’ - w?(q) ) .  (2.6) 
This expression was successfully used in [9,  101 to calculate quasi-particle energies for a 
homogeneous electron gas, and it is quite adequate for the illustrative purposes that we 
have in mind in this work. If we now let 

o?(q) = oi(l + q’ /A2)  (2.7) 
it is a simple matter to determine the expression for the screened interaction in real 
space; 
~ ( r ,  r ’ ,  w )  = u(r - r’)[[ l  + w’,{l - exp[i/r - r ’ l ( i l / w p ) d w  - w’ , ] / (w2  - w’,)}] 

where il is the screening length and the analytic nature of Wrequires that in the integral 
of (2.4) the branch cut is taken along [-CO, up] and [up, CO]. The dispersion relation (2.7) 
for the plasmon pole is correct in the limit q + 0, but not in the asymptotic limit where 
it would be more correct to have w1 proportional to q2. Within the plasmon pole 
approximation we only include the effects of plasmons on the self-energy and neglect 
the contribution from electron-hole excitations. These approximations may not always 
be satisfactory, but for the model calculations considered in this paper the simple 
expression (2.8) is deemed adequate. 

(2.8) 

We write the self-energy as 
q r ,  r ’ ,  U) = &se(r, r ’ ,  w )  + %l(r, r ’ ,  (2.9a) 

where the screened exchanged term is given by 
occ 

Cse(r ,  r ’ ,  U) = -E u?s(r)v,s(r‘)W(r, r ’ ,  - E , )  (2.9b) 
S 

and the Coulomb hole term by 

UP 
2K Xcoh(r, r ’ ,  U )  = - u(r - r ’ )  G(r ,  r ’ ,  w - U’) 

U P  

( 2 . 9 ~ )  

As a first approximation in an iteration loop we may choose the Green function as 

(2.  lo) 
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where 6, = 0’ for E, < p and 6, = 0- for E, < p ,  with p being the chemical potential. The 
initial values for the eigenenergies E, and eigenfunctions q,(r) can be generated by the 
DFT Hamiltonian. The self-energy is then evaluated and equation (2.3) is solved. In the 
next iteration q, and E, in (2.10) are replaced by the solutions of (2.3) and the cycle is 
repeated until consistency is achieved. 

For a regular lattice it is always possible to find a complete set of functions {qw(r ) } ,  
Wannier functions for example, that are localised at the lattice sites (the suffix a is a 
compound symbol that includes the orbital type as well as position). Equation (2.1) can 
then be expressed in matrix notation as: 

[wI - h - Z(o)]G(w) = I (2.11) 

where 

E a P ( o )  = d r d r ’  q:(r)Z(r, r ’ ,  w)qp(r’)  J 
and similarly for GeP( 0). 

and B, is approximated by imposing the CPA condition 
Within CPA the Green function G(o)  for a random binary alloy with atom types A 

CAGA(W) + CBGB(W) = G(m) (2.12) 

where cA(cB) is the concentration of atom A@). The Green functions GAp) are obtained 
by solving equation (2.1) with an effective potential, the so-called coherent potential, 
extending throughout the system except in the vicinity of the central cell where the 
correct potential for atom A(B) is retained. This procedure effectively determines the 
coherent potential through the implied consistency requirement (2.12) and G is the 
solution where the coherent potential extends throughout the system. 

Let us consider the simplest possible model for a binary alloy, the so called single- 
band tight-binding model with diagonal randomness [12,13]. In this model it is assumed 
that only the one basis function is of interest for each atom type A and B. The 
wavefunctions and eigenvalues for each atom are 

(2.13) 

It is further assumed that the wavefunctions on different sites are orthogonal. The 
diagonal matrix elements h,,, a = A(B), in principle depends on the distribution of 
atoms in its neighbourhood, but in this model this effect is ignored; 

A atom on site a 

B atom on site a 
(2.14) 

If we further ignore randomness in the off-diagonal matrix elements h, we have a 
particularly simple model which is easy to use but still substantial enough to give physical 
insight for a number of systems [13]. 

Henceforth all matrix elements given are diagonal ones. If Go( E) is the Green function 
for an ordered system, that is for = 0, the Green function for an ordered system 
with diagonal matrix elements h,, = w at each site is [13] G,(E) = Go(& - w ) .  Invoking 

= 
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the CPA condition equation (2.12) and ignoring for the moment the many-body self- 
energy, we have 

(2.15) 
where G,(E) is the diagonal matrix element of G,. The average density of states per 
atom for the alloy is given by 

(2.16) 
From equation (2.12) it follows that 

(2.17) 
This indicates that we may think of pA(B)(&) as the average density of states in the vicinity 
of atom type A(B). 

The self-energy is short ranged in Ir - r’ 1 [lo,  111 consequently it should be a reason- 
able approximation to retain only the diagonal matrix elements in 2. Hybertsen and 
Louie [3] found that retaining only the diagonal terms of the self-energy did not change 
the quasi-particle energies significantly in their calculations for semiconductors. The 
short-range nature of C leads one to expect that the self-energy depends mainly on the 
local electronic structure, and we take 

w = C A E A  + C B E B  - ( E A  - w)GW(&B - W) 

P,(E)  = (1/4 Im G,(E). 

C A P A ( E )  + C B P B ( E )  = P,(E). 

x A ( B ) ( w )  = &/  GA(B)(W - w ’ > ~ w ’ > d w ’  (2.18) 

where X and G are diagonal matrix elments. In order to have an expression for C A ( B ) ( ~ )  
we choose a normalised Gaussian basis, 

q ( r j  = ( ~ / J G ) ~ / ~  exp(-ar2j. 
If we replace the complete set of states in (2.10) by a sum over the Gaussian basis, we 
obtain the diagonal matrix elements 

for (w  - < U’, and 

for (w - o ’ ) ~  > w2p. 

(2.19) 

where 
y(w)  = ( 0 2  - W’,)/”,. 

The results presented in the next section do not depend qualitatively on the screening 
length A and the orbital extent a. In all the calculations A = 1.8 A-’, an average for 
metallic densities, and a = 1.0 A-2 were used. 
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As we are interested in the quasi-particle spectrum, we retain the only real part of 
the shelf-energy in the calculations. Retaining only the diagonal self-energy matrix 
elements, the Green function for our model of a random alloy system can be determined 
from equation (2.15) by replacing EA(B) by qA(B) = EA(B) + XA(B). We use an elliptical 
density of states as is normal in model calculations [12]. If the band width is 2b, the 
Green function corresponding to an elliptical density of states is given by 

GO(@) = (2/b2)(0 - Vu2 - b2). 

We take the band as filled, that is the Fermi level is at 0 = b. Substituting Go and qA(B) 
into (2.15) yields a cubic polynomial in G,; 

G?v + (4/b2)(qA + qB - 8w)Gt  + (16/b4)>[(0 - qA)(w - qB) + b2/4iGw 
+ (16/b2)[(1 - c A ) ~ A  + (1 - c B ) ~ B  - CO] 0 (2.20) 

where we have suppressed the energy dependence of G and q .  The appropriate root of 
G, can be selected by inspection. The quasi-particle energies are associated with the 
solution of a Dyson equation w - E ,  - Re Xs(w)  = 0. In addition to the quasi-particle 
energies, other solutions to the Dyson equation, such as the so-called plasmarons [9], 
are possible and care must be taken to exclude these in each iteration. The quasi-particle 
density of states is normalised to the number of electrons per atom (two electrons per 
atom) in each cycle. Convergence was usually achieved after four or five iterations. 

3. Results 

As there are effectively two units of energy involved in the model, the band width and 
the plasmon energy, it is necessary to assign a numerical value to at least one of these. 
In the calculations presented in this section the plasmon energy was set to 8 eV and up 
was used as the unit of energy. The atomic energy levels were set to and we 
use the dimensionless parameter 

= 

6 = (EA - EB)/b 

consistent with the notation of [12]. 
In figure l(a) the conventional CPA density of states without the inclusion of the 

many-body self-energy is illustrated for a range of concentrations and for 6 = 0.6. In 
figure l(b) the many-body self-energy is included and the half band width b = 0,3750,. 
The results are typical for the situation where b < wp. We note the following over the 
whole range of concentrations: (i) the overall band width decreases, (ii) the separation 
between the two bands associated with the two types of atom is enhanced. This separation 
is the consequence of the offset between the self-energies associated with the different 
component density of states, reminiscent of the opening of the band gap in semi- 
conductors [3]. In the region of interest, EA and XB are almost parallel but separated by 
an interval that is related to the separation between the centre of mass of the component 
densities of states pA and pB.  This is not an artefact of the model; the diagonal elements 
of the self-energy operator in the valence band, at least in the GW approximation, tend 
to scale as the eigenvalues of the states of ho with which they must be associated. This is 
illustrated in figure 8 of [3]  for a number of semiconductors. One would therefore also 
expect to observe the enhancement of the separation between the component densities 
of states in more realistic calculations for split band systems. 

The negative slope of the self-energy in the region of the quasi-particle band is similar 
to the jellium model [9] and is also consistent with the calculations of [3]. The overall 
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Figure 1. Densities of states and self-energies for a model binary alloy system within CPA. 
Graphs above the x axis refer to densites of states while the lines below the x axis refer to 
self-energies. Arbitrary units are used but they are scaled such that units correspond for each 
set of graphs. Full curves refer to average quantities while the broken curves correspond to 
atom type A and chain curves to atom type B. (a)  No self-energy effects; 6 = 0.6. (b )  As (a )  
but with self-energy included according to equation (2.18) and with b = 0.375 wF. (c) As ( b )  
but with an average self-energy for atom types A and B. (d )  As ( b )  but with b = 1.0 up. 



1084 D Joubert and J C Inkson 

narrowing of the band is a consequence of the negative slope of the self-energy over the 
quasi-particle band. 

In figure l(c) the same situation as in (b )  is portrayed, but in this case the same self- 
energy is used for both types of atom; GA(B) in (2.18) is replaced by G,. In this instance 
the only effect the self-energy has is to scale the band. This illustrates that the enhanced 
split-band effect depends on the distinction between the two types of atom in calculating 
the self-energy. This distinction relies on the assumption that the self-energy is short 
ranged, and from (2.5) this appears to be reasonable for metallic systems with short- 
range screening [9]. In fact it turns out that even for semiconductors the self-energy is 
very localised as illustrated in [ 141. 

As the ratio between the band width and the plasmon pole increases, the affect the 
self-energy has on the density of states alters. In figure l(d) we illustrate the situation 
where b = op and 6 = 0.6. This situation may not arise in a realistic calculation; in the 
jellium model, for example, the magnitude of the plasmon pole is always larger than the 
band width for realistic charge densities. The example is included here for completeness. 
In figure l ( d )  we notice that over the whole range of concentrations the band width is 
increased and the component densities of states are redistributed. This is in contrast with 
the previous examples where the component densities more or less scaled with the 
overall change in the band width. The redistribution of the component densities of states 
is especially pronounced for cA > 0.5. The peak in pB near the top of the band is a 
consequence of the peak in EB in the same region. This peak comes from a combination 
of the square-root singularities in W at o - = wp in (2.9b) and in the integrand of 
equation ( 2 . 9 ~ )  at o r  = cop. The high density of states in pB near the bottom of the band 
gives rise to the sharp peak in 2 B  towards the top of the band. As cB increases pB becomes 
smooth, the peak in EB is pushed to higher energies and is smoothed at the same time. 
A similar feature can be noted in ZA where a peak appears above the band as cA decreases 
and the density pA becomes more peaked near the top of the band. There is no evidence 
of a band gap opening in the density of states as for the first example. The reason for this 
difference is the different behaviour of the self-energy. In this case EA and ZB cross each 
other at least two points within the range of the band. In contrast to the first example 
where the self-energy effectively pushed the atomic levels apart over the whole range of 
interest, here the atomic levels are pushed apart over part of the range and pulled closer 
together over the rest of the interval. 

4. Summary and conclusion 

We have, for the first time, calculated the quasi-particle spectrum for a model of a binary 
alloy within CPA. The calculations show that the inclusion of the many-body self-energy 
can significantly influence the detail of the excitation spectrum. We illustrated that it is 
possible to stretch or contract the quasi-particle band width with respect to the single- 
particle band width depending on the ratio between the plasmon pole and the single- 
particle band width. For a band width less than twice the magnitude of the plasmon pole, 
a band gap opens up between the component densities of states. This is similar to what 
happens in semiconductors, but in this instance the gap opens in the valence band and 
not between the valence and conduction bands. 

At  this point it is not possible to state whether the quasi-particle spectrum, within 
CPA, will improve the correspondence between theory and experiment. A comparison 
of the self-consistent KKR CPA calculations of [15] and the XPS spectra measured in [ 161, 
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however, suggests that the enhanced split-band effect may improve the correspondence 
between the bare spectra, but in the final analysis only a detailed calculation for a realistic 
system can address these questions. 
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